广告招募

当前位置:全球贸易网 > 技术中心 > 所有分类

模数转换器 (ADC) 应用中的误差分析

2025年11月23日 10:23:12      来源:广州顶源电子科技股份有限公司 >> 进入该公司展台      阅读量:4

分享:

在设计测量系统时,我们需要充分了解不同的误差源以及它们对整体精度的影响。误差分析使我们能够自信地选择组件并确保系统满足精度要求。

本文通过不同的例子深入讨论ADC系统误差分析。

信号链中的典型错误

图 1 显示了电阻电流传感应用的框图 。

电阻电流传感应用的框图。

图 1. 电阻电流传感应用的框图。图片由Analog Devices提供尽管 ADC 是关键组件,但它只是测量系统中的一个误差源。可能还有其他几个组件,例如滤波器、放大器、ADC 输入驱动器和电压基准,这些组件会给系统增加额外的误差。这些组件的非理想性表现为系统整体失调误差、增益误差或非线性的增加。根据应用和电路拓扑,特定组件的错误可能比其他组件更严重。

ADC 增益误差取决于信号电平

在继续之前,我们需要强调增益误差和失调误差之间的一个重要区别:与失调误差不同,增益误差取决于信号电平。为了更好地理解这一点,请考虑下面描述的 3 位 ADC 的特性曲线(图 2),其偏移误差为 -1.5 LSB(有效位)。

具有 -1.5 LSB 偏移误差的 3 位 ADC 特性曲线示例。

图 2. 具有 -1.5 LSB 偏移误差的 3 位 ADC 特性曲线示例。图片由Microchip提供请注意,偏移误差会使整个传递函数移动相同的值。换句话说,无论输入信号电平如何,它都会引入相同的误差值。然而,增益误差的情况并非如此。下图 3 显示了增益误差为 +1.5 LSB 的 3 位 ADC。

具有 +1.5 LSB 增益误差的 3 位 ADC 绘图示例。

图 3.具有 +1.5 LSB 增益误差的 3 位 ADC 绘图示例。图片由Microchip提供对于输入范围上端(约 1.4 V)的输入信号,增益误差为 +1.5 LSB;然而,在输入范围的下端,误差为零。对于范围中点的输入,增益误差约为 +0.75 LSB。因此,增益误差与输入信号成比例。这意味着,如果在特定应用中输入电平始终小于满量程值,则有效增益误差只是额定值的一部分。

 

版权与免责声明:
1.凡本网注明"来源:全球贸易网"的所有作品,版权均属于全球贸易网,转载请必须注明全球贸易网。违反者本网将追究相关法律责任。
2.企业发布的公司新闻、技术文章、资料下载等内容,如涉及侵权、违规遭投诉的,一律由发布企业自行承担责任,本网有权删除内容并追溯责任。
3.本网转载并注明自其它来源的作品,目的在于传递更多信息,并不代表本网赞同其观点或证实其内容的真实性,不承担此类作品侵权行为的直接责任及连带责任。其他媒体、网站或个人从本网转载时,必须保留本网注明的作品来源,并自负版权等法律责任。 4.如涉及作品内容、版权等问题,请在作品发表之日起一周内与本网联系。