广告招募

当前位置:全球贸易网 > 技术中心 > 所有分类

风力发电机综合防雷方案

2023年03月19日 13:12:28      来源:深圳市欧姆雷盾科技有限公司 >> 进入该公司展台      阅读量:16

分享:

由于现代科学技术的迅猛发展,风力发电机组的单机容量越来越大,为了吸收更多能量,轮毂高度和叶轮直径随着增高,相对的也增加了被雷击的风险,雷击成了自然界中对风力发电机组安全运行危害的一种灾害。雷电释放的巨大能量会造成风力发电机组叶片损坏、发电机绝缘击穿、控制元器件烧毁等。我国沿海地区地形复杂,雷暴日较多,应充分重视雷击给风力风电机组和运行人员带来的巨大威胁。例如,红海湾风电场建成投产至今发生了多次雷击事件,据统计,叶片被击中率达4%,其他通讯电器元件被击中率更高达20%。为了降低自然灾害带来的损失,必须充分了解它,并做出有针对性的防范措施。
风机的防雷是一个综合性的防雷工程,防雷设计的到位与否,直接关系到风机在雷雨天气时能否正常工作,并且确保风机内的各种设备不受损害等。
如果风机主体高度约80米,叶片长度约40米,即风机点高度约为120米,且大多数风力发电机位于空旷地带,较孤立。风机的高度加上所处特殊的环境,造成风力发电机在雷雨天气时极易遭受直击雷。
国际电工委员会对防雷过电压保护的防护区域划分为:LPZ0 区(LPZ0A、LPZ0B),LPZ1 区,LPZ2 区。
在金属塔架接地良好的情况下,叶片、机舱的外部(包括机舱)、塔架外部(包括塔架)、箱式变压器应属于LPZ0 区,这些部位是遭受直击雷(绕雷)或不遭受直击雷但电磁场没有衰减的部位。机舱内、塔架内的设备应属于 LPZ1 区,这其中包括电缆、发电机、齿轮箱等。塔架内电气柜中的设备,特别是屏蔽较好的弱电部分应属于 LPZ2。
对与现有风力发电机的 LPZ0 区防雷过电压保护装置进行分析后,在 LPZ0 区内,直击雷的防护在没有技术突破的前提下仍然沿用传统的富兰克林避雷方法:利用自身的高度使雷云下的电场发生畸变,从而将雷电吸引,以自身代替被保护物受雷击,以达到保护避雷的目。这就要求风机的叶片的制作及其材料提出很高的要求,即叶片必须能够承受足够大的电流,并且在叶片上添加导电性能良好、自身重量轻的类似于碳纤维的材料,用单独的线缆将叶片与塔身连接在一起,为雷电流泄放提供一个良好的通道。
机舱主机架除了与叶片相连,还连接机舱顶上避雷针(笔者在给天津灯塔做防雷工程时,在烟台北长山岛上近距观察风力发电机看到的),与叶片位于相反的方向,估计该避雷针用作为保护风速计和风标免受雷击。
根据风力发电机的使用性质及其重要性,参照《建筑物防雷设计规范》50057-94(2000版)关于建筑物的防雷分类,可以将风力发电机划分为二类防雷建筑。二类防雷建筑对应的滚球半径为45米,根据电气—几何模型
hr=10·I0.65
hr——雷闪的最后闪络距离(击距),即滚球半径
I——与hr对应的得到保护的最小雷电流幅值(KA),即比该电流小的雷电流可能击到被保护的空间。
当hr=45米时,I=10.1KA,即在选用滚球半径为45米时,当雷电流大于10.1KA时,雷电闪击就会击在接闪器上;当雷电流小于10.1KA时,会发生绕机,即雷电可能击在被保护物上,而不是接闪器上;如果被保护物自身的高度超过45米时,还会发生侧击,即发生雷电时,闪击可能击在塔身上(塔身高约80米)。根据莫斯科灯塔观测到的雷击,有多次时击在灯塔下方的,即发生了侧击。同时,较大的高度使得上行雷的概率增大。由于风力发电机塔身较高,使得积雨云下端与叶片的距离接近,大气电场强度突增,导致发生局部的空气击穿而产生向上发展的流光,终至出现上行先导。
关于风力发电机的雷击概率,可以参照《高层建筑电气设计手册》提供的一个估算的经验公式。它是根据美国、波兰、日本、瑞典对特高层建筑的观察记录,得出的经验公式:N=3×10-5H2
H的单位为m,适用于1KL=10.由此可以估算出,在1KL=30 的地区(上海接近此数),100m高的建筑,每年大约遭受1次雷击。从这个公式中可以揭示出一个规律,即高层建筑雷击概率与其高度的平方成正比。
以上的防护是建立在一个有良好接地体的基础上的,参照《建筑物防雷设计规范》GB50057-94 及《微波站防雷与接地设计规范》YD2011-93 相关条款,风力发电机防雷接地电阻不能小于4Ω。
机舱外壳应采用钢板制成,作为承受直击雷的载体,按照GB50057-94的要求,钢板厚度必须大于4mm,在机舱的上方安装几支避雷短针,防止雷电发生绕击和侧击时,穿透机舱,对机舱内设备造成损坏。如果机舱外壳为复合材料时,应在机舱外面敷设金属网格,兼作接闪器和屏蔽之用。网孔宜为30cm×30cm,钢丝直径不宜小于2.5mm。必要情况下,需通过屏蔽计算,加大金属网格的密度和铁丝的直径。初步估算,对于0.25/100μs的雷电流,应不小于40db,各网格连接处应焊接以保证电气连接。风轮与机舱间、机舱与塔柱间、尾舵与水平轴间应通过铆接、焊接或螺栓连接等方法做可靠电气连接,也可以通过单独的多股塑铜线(截面不小于16mm2),各连接过度电阻尽量小,一般不大于0.03Ω。以上各部件连接为一个电气的整体,使之遭受雷击时,能有一个快速的通道沿塔身引入接地装置。
由于风力发电机为高耸塔式结构,非常紧凑,发电机、信息系统、控制系统都靠近塔壁,无论风轮、机舱、水平轴、还是尾舵受到雷击,机舱内的发电机及控制系统等设备可能受到机舱的高电位反击,在电源和控制回路沿塔筒引下过程中,也可能受到反击。对发电机及其励磁系统,继电保护和控制系统、通信和信号以及计算机系统都应安装相应的过电压保护装置。电力和信息回路由机舱到地面并网柜、变流器、塔底控制柜处应采取屏蔽电缆外,还应穿入接地铁管,使反击率降低。各回路应在柜内安装相应防雷装置,这样才能使(分流、均压、屏蔽、接地)系统在各节点层层设防。各电气柜采用金属薄板制作,可以有效地防止电磁脉冲干扰,在电源控制系统的输入端,处于暂态过电压防护的目的,采用压敏电阻或暂态抑制二极管等保护设备与屏蔽系统连接,每个电控柜用不小于16mm2的多股塑铜线与接地端子连接。
版权与免责声明:
1.凡本网注明"来源:全球贸易网"的所有作品,版权均属于兴旺宝装备总站,转载请必须注明兴旺宝装备总站。违反者本网将追究相关法律责任。
2.企业发布的公司新闻、技术文章、资料下载等内容,如涉及侵权、违规遭投诉的,一律由发布企业自行承担责任,本网有权删除内容并追溯责任。
3.本网转载并注明自其它来源的作品,目的在于传递更多信息,并不代表本网赞同其观点或证实其内容的真实性,不承担此类作品侵权行为的直接责任及连带责任。其他媒体、网站或个人从本网转载时,必须保留本网注明的作品来源,并自负版权等法律责任。 4.如涉及作品内容、版权等问题,请在作品发表之日起一周内与本网联系。